AI initiatives always start with the best of intentions. You create your AI strategy. You get the budget approved. You find some qualified data scientists to do the work. You identify the first AI project and have your kickoff meeting with the business partners. Your data scientists finally get the data they need. After a few weeks of data analysis and feature engineering, they build a few models. And JACKPOT! The models work!

At long last, your hard work and determination are paying off. Your data scientists present the model results to the executive steering committee. Everyone loves the progress and is excited to see your team leading the company into the AI future. You make plans to improve the model and create the engineering infrastructure to deploy it.

That’s when the problems begin.

Your data scientists start to complain about lack of input from their business partners. They have questions about improving the model and making precision/recall tradeoffs. Progress requires timely and detailed feedback, but the business partners are providing responses like this:

Well, the process isn’t that simple. We have a lot of other considerations.”
We’re all slammed with another project right now. What exactly do you need, and when?”
The current model looks good enough. When will you be done?”

Weeks tick by with little progress. You set up meetings with leadership to try to break through the roadblocks. But rather than moving forward, you find yourself in a loop, answering foundational questions you thought you had already laid to rest. You’re rehashing questions about the project’s goals instead of pursuing those goals.

And then suddenly it hits you: your business partners don’t share your enthusiasm for AI. They’re not challenging the project on its merits; they’re giving you the “slow no” by passively resisting change.  

The problem

This outcome is all too common. Many data science projects die a slow, painful death because the organization isn’t motivated to make it succeed. The failure arises for three primary reasons:

  • Your business partners didn’t really understand the project before you started.
  • AI threatens the current power structure.
  • The project has sparked a fear of change.

Your business partners didn’t understand the project

Very few people in your organization will easily understand the difference between a project based on machine learning techniques and one based on traditional rules-based software engineering. I’ve been teaching AI basics for years, and I’m always surprised at how few businesspeople understand the fundamental concepts even after a day-long workshop.

A one-hour kickoff meeting with business partners isn’t sufficient. Most likely they will walk out of the meeting without understanding the technology or what is required of them. Weekly meetings in the weeds of the model development process won’t cut it either. Your business partners are likely tuned out during these meetings, multitasking on other work. Chances are, they don’t comprehend the challenges your data scientists are tackling.  Consequently, they lack a sense of urgency and an understanding of the scope of cooperation necessary to make the project succeed.

AI threatens the current power structure

In some cases current managers might not like the implications of AI. The investment in data scientists, tools, and infrastructure for AI might need to be offset by budget cuts to IT and lines of business that matter to your partners. Sometimes projects that they have been working on for years will be either defunded or made worthless because of AI.

For example, new AI initiatives might make companies question the value of further investment in rules engines, workflow applications to support current business processes, and robotic process automation (RPA). The teams that have been working on these projects won’t be excited about competition from AI solutions.

Fear of change

Sometimes the resistance results from fear of change. AI modernization requires companies to  rethink entire business processes. People like the idea of innovation in the abstract, but they might reject specific changes that seem to conflict with their worldview. Resistance grows when change requires a lot of work or threatens to upend a comfortable work environment.

Fear, self-protection, and misunderstanding can work together or alone to transform your initially engaged business partner into a reluctant partner. To avoid the failure of your AI project, you’ll need to take action.

Solution: Shared accountability

The best way to avoid the “slow no” from your business partners is to share accountability for the project from the outset. Here are some tips:

  • Either formally or informally, ally with the leadership within the line of business. The relationship will be strongest if your partner owns the budget and business ROI and you own the execution.
  • Agree on a shared vision that aligns with your AI strategy.
  • Set up a governance structure in which the project team briefs both you and your partner on the project.
  • Make all major decisions jointly.

These arrangements won’t guarantee project success. But they’ll position you well to get support from your business partners. This support will be critical for getting feedback on model results, help labeling training data, or suggestions on the best interfaces for the solution.

Russ Rands
Chief Operating Officer + Co-Founder

More Ideas

AI Abundance:

Why you have only five years to prepare for the inevitable business extinction event.