The 5 aha moments you need to reach with your AI strategy

I have a confession. I spent several years helping Fortune 1000 companies develop AI strategies before I recognized some gaps in my approach. I used to believe that an AI strategy should primarily answer the question, “What can AI do for us?” I even wrote a book about it. 

Of course, answering this question is a critical first step. But I’ve learned that it isn’t enough. The hardest part of becoming an AI-driven company is making organizational changes. An AI strategy needs to address this challenge. 

CEOs and boards always ask about required organizational changes. In a few instances, I’ve been caught without answers to their questions. In this issue of Feedforward, I’ll share some key concepts that pushed my AI strategies to the next level. My five aha moments can help you make your AI strategy more persuasive to your leadership and more successful in the long run. 

1 – Have a plan for program oversight

Let me first explain why new program oversight processes are necessary. Most companies start traditional technology investments by choosing a single line-of-business (LOB) sponsor. This approach doesn’t scale with AI because many LOBs need similar capabilities, such as reading and classifying documents. So most AI strategies advocate for developing centralized capabilities for multiple LOBs. But this structure creates new oversight and funding questions, such as:

  • Who controls the funding? 
  • Which department first gets access to a new capability?
  • Will data scientists be centrally located or distributed in the LOBs?
  • What metrics will we use and how will they be reported?
  • Who monitors progress and makes decisions about changing direction?

Aha!

An AI strategy must describe how program oversight will work. Because no one department “owns” AI, I usually recommend creating a centralized committee for governance. The committee should include senior representatives from every department. Specific initiative oversight can happen at the subcommittee level.

2 - Your leadership isn’t ready to confront critical people issues

CEOs almost always ask questions about people. They correctly recognize that the organization doesn’t have skills to build and leverage this new technology. They worry about internal blowback or bad press about job losses. 

CEOs first want to know if the existing workforce can acquire the necessary skills through training. Although a “nobody gets left behind” approach is admirable, it’s also wholly unrealistic. Almost every company that wants to incorporate AI needs to evolve to a smaller, more skilled workforce. The gap between the skills of your existing workforce and your future needs is too big for training alone. 

Aha!

Don’t expect your leadership to confront this uncomfortable reality right now. They’re not ready to hear it. But don’t entirely avoid the topic of workforce transformation. People are going to ask your C-suite about it, and you need to arm them with an answer.

Budget for specific skills training in your AI strategy without committing to training for everyone. For example, you can provide training for basic Python or R analytics. 

3 - Lean into your communications plan

Like most AI leaders, I tend to invest most of my energy in execution. Communications used to be an afterthought for me, but now it’s a top priority. 

As I’ve written previously, getting organizational buy-in for your AI strategy is much harder than getting the CEO and board to approve it. You need a plan for internal and external communications to drive enthusiasm.

Aha!

The usual tactics of public relations, blogs, and speaking at conferences are all fine for external communications. You probably just need to budget for them. 

Internal communications are harder. But they also present a great opportunity for you professionally. At a minimum I suggest you plan to give all-hands presentations and “ask-me-anything” sessions with the company’s AI leaders and C-suite. If you have the budget and time, I suggest also creating a comic about your company’s AI future. Take a look at this example of an AI comic we created. 

Comics are a great medium for evangelizing AI because they make the future more conceivable through stories and images. 

4 - Prepare for questions about risks

Everyone has read about AI risks in the media. Although concerns such as bias, model drift, and interpretability are usually valid, they’re not immediate concerns for the AI strategy. (Often the people who are the least informed about AI have the strongest opinions about these issues.)

Regardless, your C-suite will ask about model risks. Your AI strategy needs to provide answers. 

Aha!

Don’t attempt to write out your model governance policy in your strategy. It takes too long. Instead, make model governance one of your strategy’s action items. Set the stage by explaining the risks you plan to mitigate and address. Describe your approach to developing the governance policy. 

You can use the three P’s of model governance as a framework to organize your thinking:

  • People: What role will your existing governance teams play?
  • Process: What new processes can mitigate model risk?
  • Priority: What models will go through the process first?

5 - Balance infrastructure investment with business capabilities

You’ve got data silos. Your infrastructure is brittle. You have outdated tools and platforms. 

You need to start fixing these infrastructure problems before you can scale your AI program. But your business customers don’t care about infrastructure—they want solutions, and they want them ASAP. How do you resolve this dilemma?

Aha!

Don’t try to delay delivering business solutions until infrastructure problems are “fixed.” This approach creates unrealistic expectations; you’ll always have infrastructure challenges. Instead, create a roadmap for delivering business value while you harden your infrastructure. 

For example, don’t tie your AI projects to the completion of a data lake. Instead, identify the most critical data inputs for your initial models. Invest in the data pipelines that make those models reliably available. This approach allows you to deliver near-term business value while still hardening your infrastructure to support increasing scale.

Showcase your unique leadership role

I hope you learn from my aha moments and address these topics in your AI strategy. You don’t need answers to all possible organizational questions related to your company’s AI future. Simply acknowledging the need for changes to areas like risk, oversight, and training will help galvanize organizational buy-in. 

You play a unique role as an AI leader. Most of the people at your company—and perhaps your entire C-suite—are hesitant and confused about AI. By addressing the necessary organizational changes head-on, you can overcome their biggest objections. Best of all, you showcase your unique role when you address these concerns. You’re not just another AI evangelist. You’re a leader who will guide the company into an exciting future.

Did you find this valuable? Subscribe to our newsletter and get our best content delivered straight to you.

You Might Also Like

The guaranteed path to AI failure: An unmotivated business partner

Many data science projects die a slow, painful death because the organization isn’t motivated to make it succeed. In this post we address the three primary reasons projects fail and provide suggestions for what you can do to overcome these challenges.:

Amateurs talk about AI models. Pros talk about AI solutions.

Your goal as an AI leader is to get your teams to think like pros. You want them to strategically look for ways in which AI can lift the entire business instead of just solving a narrowly defined problem. Your team should constantly seek ways to advance the bigger vision of becoming an AI-driven company. In this issue of FeedForward, I’ll describe the difference between how pros and amateurs think about AI. 

Natural Language Generation - What Can You Develop in the Next 3 Years

In this video Justin Pounders, Director of Machine Learning and AI Research at Prolego, breaks down natural language generation (NLG) into its most basic components and describes how you can begin building out these components in your business. (And, no, it doesn’t depend on GPT-3!) He describes how NLG depends critically on two questions (WHAT you want to say and HOW you say it), the types of data you can feed into NLG systems, and a development path for being able to summarize multiple sources of data in plain English.

Getting started? Get our book!

The complete guide for understanding AI, identifying opportunities, and launching your first product and become an AI Company in 90 days.

  • AI Fundamentals
  • The 4 Product Patterns
  • The AI Canvas
  • Strategy
  • Discovery Opportunities
  • Launching Your First Product
  • Hiring Strategies

Sign up to download our guidebook for CEOs, product people and busy business leaders.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.